Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé

Opportunités et limites de l’apprentissage automatique (machine-learning) pour les sciences appliquées (en anglais)

26 février 2016 @ 14h00 - 15h00

Gratuit

Présentation de Mohammad Attarian Shandiz – Université McGill, Canada

Modern methods in machine learning have provided many opportunities for solving complex problems in applied science. Hence, for a data scientist is essential to be familiar with the most important and current fields of research in machine learning and data mining. In this talk, the most significant fields of research in machine learning and data mining are introduced based on the survey in the database of scientific journals. Subsequently, various applications of machine learning for some challenging problems in medicine, finance and engineering are discussed. Lastly, the results of optimized classifiers for a classification problem in the field of lithium-ion batteries are presented. Ensemble methods including random forests and extremely randomized trees provided the highest accuracy of prediction among other methods for the classification based on the Monte Carlo cross validation tests.

Séminaire du GERAD
26 FÉV. 2016 14H00 – 15H00

Salle 4488
Pavillon André-Aisenstadt
Campus de l’Université de Montréal
2920, chemin de la Tour Montréal QC H3T 1J4 Canada

Détails

Date :
26 février 2016
Heure :
14h00 - 15h00
Prix :
Gratuit
Site :
https://www.gerad.ca/fr/events/1304

Organisateur

GERAD

Lieu

Université de Montréal, Pavillon André-Aisenstadt
Pavillon André-Aisenstadt
Montréal, QC H3T 1J4 Canada
+ Google Map